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PLASTIC DEFORMATION IN BEAMS

UNDER SYMMETRIC DYNAMIC LOADS 1

by

J. A. Seiler and P. S. Symonds
(Brown University)

Plastic deformations in beams caused by dynamic loads

distributed over finite lengths are considered in this paper.

The analysis is based on the assumption of "plastic-rigid"

behavior so that the results should be valid when plastic deform-

ations are sufficiently large. The final deformations for

distributed loads are found not to differ much qualitatively

from those to be expected for concentrated loads. However,

the magnitude of the deformation decreases rapidly as the

length of the loaded area increases from zero, for given load

pulses. Thus the simplifying assumption of a mathematically

concentrated load may cause a considerable over-estimate of the

final deformation

1. The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract N7onr-35810 with Brown University.
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PLASTIC DEFORMATION IN BEAMS

UNDER SYMMETRIC DYNAMIC LOADS

by

J. A. Seiler and P. S., Symonds
(Brown University)

1. Introduction*

In a recent paper [1] 1 a method was described for cal-

culating the permanent deformation of a bar of ductile metal

subjected to a transverse impact load concentrated at the mid-

point of the bar. The basis of the method, originally suggested

by Prager, is that elastic strains are neglected entirelyt the

bar being assumed to be rigid except at cross-sections where the

limit, or fully plastic, moment Mo is maintained. At such see*

tions it is assumed that plastic strains of indefinitely large

magnitude can occur. Since discontinuities in slope angle can

take place at such sections, while the bending moment remains

essentially constant there, these sections are conveniently

termed "plastic hinges". This concept has been found to have

valuable applications in predicting static loads which produce

failure of the "plastic collapse" type in civil engineering

structures. References (2, 3] may be consulted for descriptions

of these applications, and for details concerning the signifi-

cance and calculation of the limit moment magnitude.

Whether or not the concept of localized deformation at

plastic hinge sections can be usefully applied in problems of

1. Numbers in square brackets refer to the Bibliography at the
end of the paper.
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dynamic loading depends largely on how much the energy actually

absorbed during plastic deformation under a given dynamic load

exceeds the maximum elastic strain energy which could be stored

in the structure* A criterion based on this -hypothesis was

presented in [1]. Experimental investigations designed to test

the predictions of this so-called "plastic-rigid" type of dynamic

analysis will be highly desirable, and it is hoped that the re-

sults of the present paper will be helpful in planning and inter-

preting such experimental work.

It will be particularly desirable, in connection with

experiments and with practical applications in general, to know

how certain load characteristics may be expected to influence

the results. In a previous paper (4], the influence of charac-

teristics of force pulses was investigated, the force being

supposed mathematically concentrated at the mid-section of the

beam; as in [1], the case of a uniform beam with free ends was

considered. In [4] a simple empirical formula was suggested by

means of which the final central angle of deformation produced

by a concentrated force could be estimated from knowledge of the

total impulse and peak force value; the shape of the force-time

curve was found to be relatively unimportant.

The present paper is concerned with the differences

from the results of []+1 to be expected when the load is dis-

tributed over a finite length of the beam rather than concen-

trated at the mid-section. In order to obtain both qualitative

and quantitative comparisons as simply as possible, the only

form of load distribution curve used is that indicated in Fig. 1.
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The total load P is uniformly distributed over a length 2e where

e :< t Thus the parameter specifying the distribution of the

load is the ratio = k.

A preliminary discussion of this problem has been given by

Salvadori and DiMaggio £5). They used a smoother but more com-

plicated load distribution function, the load intensity being

written as:

-()PN ec )
2t1l - e'C(U + .2-)

2

where P is the total load, x is distance from midsection, and c

is a concentration parameter which may vary from zero (corres-

ponding to a uniform distribution over the entire beam), to in-

finity (corresponding to concentration of the load at the mid-

section). The authors carried their study only up to the point

of showing that a sufficiently "spread out" load, characterized

by a value of the parameter c less than 3.45, would apparently

introduce a qualitative difference in the behavior o"' the beam.

This apparent difference will be discussed later in the present

paper. With a simpler form of load distribution, as used in

this paper, it is not difficult to carry the investigation

further, and to obtain quantitative comparisons between plastic

deformations occurring with various degrees of localization.

These quantitative comparisons and more complete qualitative

comparisons between final plastic deformations are the main pur-

pose of the present paper. The main practical result is that a

small degree of spreading of the load over a finite length of

the beam leads to a considerable reduction of the total deforma-

tion at the midsection. Qualitatively, however, the present
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analysis shows that the final shape of the deformed beam will not

differ radically from that predicted by analyses assuming the

force to be concentrated at the midsection.

2. Analysis of Earlier Stages of Deformation.

Taking the load to be uniformly distributed over the

length 2e as shown in Fig. 1, we consider the successive phases

of motion and deformation which can occur. We suppose the total

load P increases steadily up to a maximum value and then de-

creases to zero, so that force pulses of the general shape shown

in Fig. 2 are considered.

Under these conditions, as the force increases from

zero its first effect iL to cause a translation of the bar paral-

lel to itself. Then all points of the bar have the acceleration:

a I P where m is the mass per unit length. This initial2m 1
translation is termed the "first phase" of the motion. The con-

stant acceleration has the effect of a uniformly distributed

loading, and the bending moment at any section x [positive bend-

ing moments defined as in Fig. (kb)] is given by:

m( - x) 2

x > e: M(x) = - a2 (2)
x < e: M(x) = - m(- x) 2  ,)2e:.2 a +.7 (e;

2e 2

where x is measured from the middle of the beam. The bending

moment in this phase has a minimum at x = 0 given by

M(O) mt 2 a Pt, + D. (2a)

This first phase ends when the central moment reaches the value

-M0 , corresponding to a load PI given by
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where, for convenience, we define 1 A and = k.

In the "second phase" of the motion, the two halves

remain rigid but rotate with respect to each other, as in Fig,

(3a)2 Let aO denote the linear acceleration of the centerg and

ao = 0 denote the angular acceleration of the right handdt2

half (positive clockwise)* Assuming 00 to remain small the

equations of motion are:

I=ma-1 R . M10 a+)
2 0 ao 2 O 12

Solving these for ao and ao9 we obtain:

ao  MO 1[ (2 - 1 k) -6

(5)

tao = M-2-[3I(l " k) - 121.

This second phase continues until the moment at some

additional cross-section reaches the magnitude Mo.

To see how this may occur, it is helpful to refer to

typical diagrams of effective load, shear force, and bending

moment in the right hand half of the beam. The effective load

intensity q, with sign defined as in Fig* 4(b), can be regarded

as made up of th'ee parts, as shown in Fig. 4(a); these are the
M

intensity - 0 2 of the given load distributed over the
2e, t22k M,

length e, the uniform load intensity -ma(-)=. MO corresponding
2 t2 2

to the acceleration a(2) of the center of gravity of the half
2

beam, and finally the linearly varying effective load intansity
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corresponding to the angular acceleration a0 of the half-beam,

whose maximum value is mao 1 = 12 3  l-k) -6). qV, Mt

curves are shown in Figs. (Sa), (Sb), and (5c).

Two limiting conditions are evident from the diagrams

of Fig. (5). In the first place, unless q(t) is positive, the

V curve cannot cut the axis in the unloaded position x > e, and

hence there can be no positive moment in the beam. Hence, in

order for it to be possible to develop a plastic hinge at a point

where the maximum moment reaches the value +Mo, we must have

and k related so that

.3 (1 - k)- 6-2 > 0 (6)

2 2
or -OU k) >6. 

(6a)
2

Secondly, at the left hand end of the half beam, q(O) must re-

main positive; if it did not V would have negative values in the

neighborhood of x = 0, and hence M(x) would decrease below -Mo

in this region. This requires the following relation between

jL and k:
2" L (1 - k) + 6 - - > 0 (7)

or

.(3k - 1)(1 - k) < 12k. (7a)

It will then be evident that the second phase may be

terminated in some cases because there is a positive moment in

the interior of the half-beam (as in Fig. 5(c)) which roaches

the value M. at a sufficiently large value of the load; and in

other cases because the moment in the neighborhood of the mid-
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section reaches the negative limit moment value -Mo over a finite

length of the beam, as in Fig. 3(c),

The first case, occurrence of a "positive" plastic

hinge in the interior, is possible only if the inequality (6) is

satisfied. From 6(a), therefore$ it is evident that in order

for this new hinge to form in the interior of each half-beam it

is necessary to have: k

3 (8)

The second case, of spreading of the central hinge, can occur

only if inequality (7) is .t satisfied, and hence only if

k > .1 (9)

3

since inequality (7a) will be satisfied, regardless of V, if

k < 1/3.

In the case of a concentrated force, [1, 4] , the

second phase ends when the positive bending moment reaches the

value Mo, and this always occurs when the load parameter V reaches

the value ii = 22.89. The considerations of the preceding para-

graph show that when the load is sufficiently spread out (k > 2/3),

tho formation of interior positive hinges will not take place in

this manner. This is the main qualitative difference caused by

loading over a finite length of the beam. Instead of new out-

board hinges ma'ing their aprearance, for sufficiently large

k values the now effect is the spreading of tho central hinge,

whtch in the earlier part of the motion is always concentrated

(according to the basic hypotheses of the method) at a single

section.
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We now put in more precise terms the conditions for

(1) occurrence of a positive plastic hinge in the interior of

the beam, and (2) spreading of the central negative plastic hinge.

(1) Occurrence of lateral plastic hinge:

For e < x < ' the bending moment is given by

M(x) = .E (x e) - m-2ao mx3a (10)

This moment will have a stationary maximum at a point which can

be found by solving the equation

v =M = - mxa o + mx2 a . (11)
dx 2  2

Using Eqs. (5) this yields

AT = A (12)t, 3l~l- k) -12

This value of x is put in Eq. (10) to give the expression for the

maximum moment. Then the value of I for which the second phase

ends is found by setting the resulting expression equal to Mo o

The following cubic equation in II and k is obtained:

(31-2) 2 36(12k 2  +7)i + 423(5k'4)II + 3456 = 0. (13)

For any particular value of k, the real root of Eq. (13) then

gives the value of 0 for which the lateral hinges first appear,

on the assumption that the kinematic picture of Fig. (3b) is

correct.

(2) The central hinge must begin to spread if

d2 MI = I =q(O) =0. (1)

dx2 'x=0 dx =
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The critical relation is therefore obtained by replacing the

inequality in (7a) by an equality, which yields

12 k .. .( 5
OII =  - 1)(1I- k)"

The curves of V as a function of k according to Eqs.,

(13) and (15) are plotted in Fig. 6. It is found that the posi-

tive branch of the curve from Eq. (15) crosses that from Eq. (13)

at k = 0.361, Ipj = 81.4. We conclude, therefore as follows:

(1) If k < 0.361 the second phase ends with the formation

of outboard hinges. The initial location of these hinges will

be found from Eq. (12), and the value of the load parameter 0 at

which they appear is the real root of Eq. (13). Plastic regions

appear in the manner indicated in Fig. (3b).

(2) If k > 0.361 the termination of the second phase will

be due to the spreading of the central plastic hinge into a

finite region in which the moment has the constant value -Mo.

The load parameter at which this effect begins is given by Eq.

(14), and the corresponding type of deformation is indicated in

Fig. (3c).

This critical value of k = 09361 corresponds to the

critical value c = 3.45 found by Salvadori and DiMaggio for the

smooth load distribution curve assumed by them, Eq. (1). However,

they refer to "splitting of the central hinge" as the effect re-

sulting when Eq. (14) is satisfied before the lateral hinges

form. They state that when Eq* (14) is satisfiedi "the moment M

becomes minimumiat x = 0 and the central hinge splits into two

symmetrical hinges which wander outward, plasticizing a central

portion of the beam". This suggests that two distinct hinges are
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present in place of the original central hinge, with the portion

of the beam between them subjected to a moment less in magnitude

than Mot and hence moving as a rigid body. This could only occur,

however, if the load intensity has a relative minimum at the cen-

ter, which is not the case in the distribution curve assumed by

them. In the usual type of load distribution met with in impact

problems in whi.ch the load intensity is either constant on a

relative maximum at the midpoint, the effect is not a "splitting"

but a spreading of the central hinge. In other words, unless

the load intensity increases (near x = 0) with distance from the

midpoint, the effect is the development of a "hinge" of finite

length, with the moment constant at the value -Mo in a finite

region which increases in size as the load increases.

For the analysis of the motion after the close of the

second phase we assume first that the load distribution parameter

k " e/t is less than 0.361 and the°i that k exceeds 0.361.

3. Analysis for k < 0. 161.

In this case the lateral hinges appear while the cen-

tral hinge is still localized at the center section. The appro-

priate free body diagrams ftr the right hand half are shown. in

Fig# (7), the distance of the lateral hinge from the center being

denoted by xh* It is assumed that xh > e. The equations of

motion, as in [l, 41 are

z = xh(ao " .2 xha) (16a)

2 - -(16b)2 2 12

0 = M('- xh)[al +~U. xh)al] (17a)
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MO = m( Xh) 3L •  (17b)

The fifth equation relating the five unknowns a0, al, ao, a1

and xh is that which expresses the discontinuity of linear accel-

eration at the hinge location xh9 which is in general a function

of time. This is (See [1, )+])
°. o - _a - h = ( - wl) (18)

where wo, w1 are the angular velocities of the segments to the

left and to the right, respectively, of the hinge, i.e.,

dw O  dw1a = dw- a1  -. (19)

Equations (16) - (18) yield the following system of equations:

al = 3 = 1M0a 1= 2 = [3L(t - k) - 8] (20a)0 dt mt3( 1 3 ) 2b
d1  12MO 2ba MI

1 d m.3(l -)

ao 2 22 [i(4 - 3k) - 24] (20c)
2m.0~

M6M o

where xh (21)

These equations hold so long as the bending moment has

a magnitude less than Mo everywhere except at the sections x = 0

and x = xh The effective load, shear, and moment diagrams for

the segments to the left and right of the moving hinge, Fig* (8)
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indicate that the critical condition will be a spreading of the

central hinge. This will occur when the following condition is

satisfied d2M = = q(0) = 0. (22)

dx2 x=O dx x=O

From Eq. (16) this leads to the condition

= 24k (23)
(C-k)(3k - () (

The use of the limiting condition requires that Eqs. ( 20) first

be solved, yielding , (among other quantities), as a function

of p; these solutions will be valid as long as I is less than

the value computed from Eq. ( 23.

If any given finite force pulse is replaced by a rec-

tangular pulse of the same peak force and the same area, i.e.,

total impulse, the final deformations computed for the rectangular

pulse will exceed the true ones for the original pulse, but for

many purposes the results will be useful estimates (e.g., in

error by 15 or 20 percent), see [4]. Therefore to obtain quan-

titative comparisons of total deformations with various values

of k we have assumed a rectangular force pulse shape, Fig. (2b).

Since the details of the method of analysis exactly parallel

those in [1S, only the final results are shown in Fig. (12) where

curves of the deformation parameters ma3 go/MoT 2 are plotted as

functions of j'm = Pmt/Mo for a series of values of the distribu-

tion parameter k. These results and others are discussed further

in tho final section of the paper.
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+. Analyvis for k > O.A61.

In this case the central hinge begins to spread before

lateral hinges appear. At time t the central hinge will have

spread out a distance d from the center; in the region -d S x < d

the moment is constant at the value -Mo . The equations of motion

for the segment of length - - d are obtained from the free body

diagrams of Fig. (9), and are found to be:

(e - d) = m(- d)[a'- -1 (R,- d)a' (24a)
S0 2

Lt d ,- d e -d M Mod3
Ne 2- 2 12 0o (2b

where a' is the acceleration at x : d and ao is the angular accel-

eration of the segment of length V- d.

Equations (24) yield expressions for the accelerations

as follows:

. . . .(k - X)0+ - X - 3k) - 6 (25a)

0 mj(l -

a .2.. (*_(k - X)(1 - k) - 1] (25b)
0  m 3(l- X)3

where
X . (25c)

To determine d, we use the fact that the central hinge spreads

at a rate just sufficient to prevent the moment near x = d from

decreasing below the value -Mo. The condition is that

_ 1 =dxl d) =2- - ma0 = 0. (26)
dx2 x-d x=d

Using Eq. (2<') and simplifying, it is found that X is the follow-

ing function of I and k:
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k- - 1)(1 - k) - 12k (27)
2p(l - k)

Plots of L vs. X for various values of k are given in

Fig. (10). Thus for k > 0.361 the critical portion of the beam

(- x < %) < x) has the constant moment -M, so that the accelera-

tions of all elements are proportional to the local load intensity

P/2e. The two segments of length Z- d = t( - X) rotate as if

rigid bars hinged at the sections x = + d, Fig. (3c) So long

as the moment in the outer segments rerqtins less than Mo in mag-

nitude, this is the correct picture. The load magnitude at

which this picture ceases to be the correct one is that at which

new "positive" hinges form in the interior of the outer segments.

The maximum bending moment in these segments can be investigated

in the same manner as was done for the case of a localized cen-

tral hinge. The following equation was obtained by setting the

maximum bending moment in one segment d _< x _ t, equal to Mo ,  It

is analogous to Eq. (16) but depends now upon X = d/t in addition

to ke

2 2(k - X)2(l - X) 2 [L(k - X)(2 + X - 3k)-12k] - (k - - )2

4k[31(k - %)(l - k) - 12k]2  4k

+ 3(k- X)3(l - X)3
6k[3i.(k- X)(l- k) - 12k]3  (28)

To determine the load at which the additional hinges first appear,

the above equation must be solved simultaneously with Eq. (27).

Alternatively, for any chosen value of k (> 0.361) plots of j± vs.

% from Eq. (28) and Eq. (27) can be drawn, and the intersoction

of the two citrves yields the initial value of V in question. As
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one example, the case k = 0.5 has been worked out. In this case,

when the two equations are combined we obtain

0- 1921L3 + 11520 2 - 110592 0 0. (29)

This has solution 0 = 186, corresponding to X = 0#21+2; the new

hinge appears at x : 0.660t,

5. Numerical Results and Conclusions.

The type of load distribution considered here, with

uniform load intensity over part of the beam and zero load over

the rest, is intended less as a realistic loading than as the

simplest type of distributed load to handle analytically. It

seems intuitively clear that the qualitative results deduced from

this simple case will apply to general cases of loads spread over

finite areas. The main qualitative result is, in fact, that the

general picture of the final deformation is exactly the same as

that in the case of concentrated loading unless the length over

which the load is applied exceeds about a third of the total

length of the beam Only when k exceeds the value 0.361 does a

qualitative difference appear. This consists of a spreading of

the central hinge, so that instead of a plastic hinge localized

at the midsection there is a finite length of the beam in which

the bending moment has the magnitude Moo However in real beams

a hinge cannot be localized at a single cross-section in any

case since this would imply infinite strains; the plastic region

is always spread over a finite region even when the load is

strongly localized. Thus the final plastic deformation of a beam

subjected to a sufficiently large distributed load will not in
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any case differ radically from that predicted by an analysis

using a mathematically concentrated load.

As far as quantitative comparisons are concerned it is

of particular interest to investigate how a small degree of load

spreading modifies the magnitude of the final deformation pre-

dicted by the simpler analysis for a concentrated force, since

in practice loads are always applied over finite areas.

To provide information of this kind calculations have

been made of the final central angle go produced by a series of

loads with k values ranging from zero to 0.30. The force-time

curve was taken, for maximum simplicity, to have a square-wave

shape, as in Fig. 2(b). For this type of force pulse the lateral

hinges move instantaneously to positions which they maintain so

long as the load remains constant. The lateral hinge coordinate

U is found as the solution of the following equation:

k +0. 
(30)2( 2 )2

This is Eq. (20e) with the right hand side set equal to zero.

Figure 11 shows curves of plotted against p for values of k

ranging from zero up to 0.30. The calculation of the further

increments of deformation which occur after the load drops to

zero are made in the manner described in [4].

Figure 12 shows curves of the dimensionless parameters

m 3go/MoT2 plotted as a function of the dimensionless load para-

meter ILM = PVMo, for k equal to 0, 0.10, 0.20, and 0.30. Figure

13 shows curves of mtQo/MoT2 plotted against k for various values

of Im. These curves show that when the maximum load is large
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(eag., Im > 40) the deformation falls off very rapidly. For

example, with 0m = 40 the deformation parameter drops from about

800 for a concentrated load (k = 0) to about 600 for k = 0.05.

This apparently large reduction caused by the distribution of the

load over a finite length may be somewhat exaggerated, as com-

pared with practical casest because of the special conditions of

the present calculation, i.eea, the assumption of a rectangular

force pulse and of a constant load intensity over the loaded seg-

ment of the beam. However the results indicate that the assump-

tion of a mathematically concentrated load may lead to an appre-

ciable overestimate of the deformation, since the actual load is

spread over a small but finite length of the beam* This result

should be of significance in evaluating experimental results.

It should perhaps also be noted that strain-hardening will cause

a further reduction in the permanent deformation; this effect

will presumably be more important the higher the degree of con-

centration of the load.
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Fig. 1

Type of load distribution assumd in this paper

P P

IdI

(a) (b)

Fig. 2

Typical force pulse loadings
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Fig. 3

Possible types of deformalftionsh 
(a) Second phase; plastic

hinge at midpoint onl.y; (b) Third 
phase with addl tional

hinges at interior points in each 
half-beam; (c) Third

phase with development of fin1i 
central plastic region.
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Fig. 8(a)
Fig. 7

Free body diagrams for motion in
third phase with concentrated

central hinge

V

x

Xh --

Fig. 8(b)

d-o M

Fig. 9 Xh  - 4
Free body diagram of segment to
right of central plastic region Fig. 8(c)

Diagrams of effective load shear
and bending moment in the third
phase, vith concentrated central

hinge
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Fig. 12 Final central angle of
deformation caused by
various values of the

700- load distribution
parameter k as func-
tion of maximum load P
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Fig, 13 Final central angle of deformation
as function of load distribution

7W- parameter kc

woQ

2000

200-

30

0.1 Q2 03
hut


